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Abstract 

This paper examines experimentally the impact of classroom inputs in the production function of student 

achievement from kindergarten through 6th grade. We use data from a large cohort of elementary school 

students in Ecuador, who were randomly assigned to different classrooms at the start of each academic 

year. We estimate reduced form and structural models of the process of skill accumulation to show that 

learning at the end of a grade is close to an additive function of classroom quality experienced in all 

previous grades. There is no evidence of dynamic complementarity between classroom quality across 

different grades. 

 

 

 

 

 

 
1 Carneiro gratefully acknowledges the support of the ESRC for CEMMAP (ES/P008909/1) and the ERC through 
grant ERC-2015-CoG-682349. We thank Flavio Cunha, Jonah Rockoff, Jesse Rothstein, and participants in multiple 
seminars and conferences for their comments, Alejandra Campos, Nicola Dehnen, Nicolás Fuertes, Matías Martínez and 
Margarita Isaacs for outstanding research assistance, and the Government of Ecuador for collaboration at every step in 
this research project. 



 

2 
 

1. Introduction 

The process of human capital accumulation in childhood is complex, involving many inputs provided by 

different actors, including parents, teachers, and peers. Some inputs may have larger effects at some ages 

than at others, and there may be important interactions between them. Establishing causal effects is 

difficult, however, because inputs are likely to depend on characteristics of the child which are 

unobservable to the researcher. 

In this paper, we analyze the dynamic impacts of one important input—classroom quality—on 

learning outcomes in elementary school. Specifically, we focus on the extent to which being randomly 

exposed to a higher-quality classroom in one grade increases the returns to being in a higher-quality 

classroom in a subsequent grade. Cunha and Heckman (2007) refer to this process as “dynamic 

complementarities” in the production of human capital. 

There is a small literature that tries to uncover evidence of dynamic complementarities. The 

fundamental challenge in this research is finding more than one exogenous source of variation that affects 

human capital accumulation for the same individuals at two points in time. One recent paper argues that 

this may be akin to “asking for lightning to strike twice” (Almond and Mazumder 2013). 

Earlier research has taken one of two approaches to address this identification challenge. Some 

papers have relied on quasi-experimental variation in policies that affected human capital accumulation at 

two points in the life cycle. This approach is taken, for example, by Johnson and Jackson (2019), who 

study possible interactions between access to Head Start and court-ordered increases in school spending 

in the U.S. 

A different strand of the literature uses panel data on inputs and outcomes (skills) at various points 

in time to estimate the parameters of a structural model of skill formation in which inputs are allowed to 

interact with one another. This is the approach taken by Cunha and Heckman (2007), Cunha et al. (2010), 

and Agostinelli and Wiswall (2016) using panel data from the U.S., and Attanasio et al. (2020) using panel 

data from India.  

The results of these studies have been mixed.2 In this paper, we add to this literature by using data 

from a unique experiment we conducted in 204 schools in Ecuador, a middle-income country in South 

America. In these schools, a cohort of approximately 13,500 children was randomly assigned to 

kindergarten classrooms. Subsequently, these children were randomly re-assigned to different classrooms 

in 1st, 2nd, 3rd, 4th, 5th and 6th grades (so “lighting” strikes not only twice, but up to 7 times).3 Compliance 

 
2 Attanasio et al. (2020), Cunha and Heckman (2007), and Johnson and Jackson (2017) find evidence of dynamic 
complementarities, whereas other authors such as Kinsler (2016) and Malamud et al. (2016) do not. 
3 We refer to our assignment as “random” as shorthand, although technically random assignment occurred after 3rd 
grade. In the earlier grades, the assignment rules were as-good-as-random. Specifically, the assignment rules we 
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with random assignment was essentially perfect—98.9 percent on average. With this data, we are able to 

combine experimental variation in school inputs at different ages of children, with structural models of 

skill accumulation to provide new estimates of the substitutability of school inputs at different ages. 

Children were tested in math and language at the end of each grade. From these assessments we 

construct a measure of grade-specific achievement for each child, scaled in terms of grade equivalents. The 

test score data also allow us to construct classroom value added, our measure of classroom quality, as in 

our earlier work (Araujo et al. 2016), as well as in research using U.S. data (Chetty et al. 2011; 2014).  

The fact that each child in our data was exposed to seven exogenous, orthogonal shocks to 

classroom quality is unique. It allows us to test for dynamic complementarities with minimal assumptions 

and using different approaches. We start with a simple representation of the data, using a classification 

that is crude but easy to visualize—specifically, we divide classrooms into two categories (within each 

school and grade): high and low quality. We compare math and language achievement at the end of each 

grade for students experiencing different sequences of high- and low-quality classrooms up to that grade. 

We document that achievement is approximately linear in the number of high-quality classrooms 

experienced up to a grade, suggesting that dynamic interactions are unlikely to be important in our sample. 

If there were dynamic complementarities in classroom quality, we would expect achievement to be a 

convex function of the number of high-quality classrooms. 

Next, we formally test for interactions between classroom quality in different grades, in a more 

realistic setup where classroom quality is continuous. Specifically, we implement a procedure suggested by 

Kinsler (2016), who uses non-experimental data on children in 3rd and 4th grades in North Carolina to test 

for dynamic interactions in teacher quality. We model a student’s achievement at the end of each grade as 

a flexible function of current and past classroom assignments, from kindergarten up to that grade. 

We compare the fit of two models. The first model specifies achievement in grade t as an additive 

function of indicators for classroom assignment in the current and previous grades. These t+1 indicators 

(one for each grade, from 0 to t), or classroom fixed effects, capture the average effect on learning at the 

end of grade t of assignment to each classroom in all grades up to t. This model assumes that there are no 

interactions between classroom quality across grades. The second specification saturates the model 

described above by adding interactions between classroom fixed effects in each grade. This is equivalent 

 
implemented were as follows: In kindergarten, all children in each school were ordered by their last name and first name, 
and were then assigned to teachers in alternating order; in 1st grade, they were ordered by their date of birth, from oldest 
to youngest, and were then assigned to teachers in alternating order; in 2nd grade, they were divided by gender, ordered 
by their first name and last name, and then assigned in alternating order; and in 3rd to 6th grades, they were divided by 
gender and then randomly assigned to one or another classroom. We provide a number of randomization checks in 
Appendix A. 
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to using one indicator for each sequence of classrooms (as opposed to one fixed effect per classroom and 

grade).4 

We find that, for all grades, we cannot reject that the additive model fits the data as well as the 

model with interactions. In other words, we do not reject that the interactions are jointly equal to zero, or 

that there are no dynamic complementarities between classroom quality in each grade. A nice feature of 

this procedure is its flexibility. It does not require specifying a production function or strong distributional 

assumptions on unobservables.5  

Finally, we estimate grade-specific constant elasticity of substitution (CES) production functions 

of learning (as in Cunha et al. 2010), where the input is classroom quality in each (current and past) grade. 

This puts more structure on the data, but it allows us to estimate elasticities of substitution between 

classroom quality in different grades, and to simulate the impacts of changing classroom quality in each 

grade on achievement. Consistent with the evidence from the other two approaches discussed above, we 

show that classroom quality is highly substitutable over time. 

Classroom value added is a natural input to look at since it includes everything that happens in the 

classroom. However, “classroom quality” also subsumes any responses by parents to variation in the 

quality of teacher, peers, or other aspects of the classroom environment. Measures of classroom quality 

that include these endogenous responses may be most useful for policy purposes, since policy makers cannot 

control what endogenous responses will be. In other words, a policy maker may more interested in learning 

whether two education policy tools are complements or substitutes after parents react to them, than in 

understanding whether they are complements or substitutes keeping parental reactions fixed. 

That said, when discussing dynamic complementarities between two specific inputs (e.g., 

classroom quality in first and second grade), Cunha and Heckman (2007) and others typically have in mind 

a setting where other (e.g., parental) inputs are kept fixed. Parental responses could in principle reinforce 

or offset differences in classroom quality, as in Pop-Eleches and Urquiola (2013) or Malamud et al (2021). 

In that sense, parents can undo or reinforce dynamic complementarities in school inputs, that would 

manifest themselves differently if parents did not react. In the words of Malamud et al (2021), “well-

identified evidence is necessary to assess dynamic complementarities, but as often, reduced form results 

do not necessarily reveal the possibly countervailing mechanisms that underlie them”. 

 
4 For example, if there are two classrooms per school and grade, then the model without interactions (first specification) 
includes 2*(t+1) classroom indicators, whereas the model with interactions (second specification) includes 2t+1 sequence 
indicators. 
5 Another way to see this is as a variance decomposition, and our finding as saying that these interactions do not explain 
a lot of the variance in the outcome. This procedure requires the assumption that the effects of classrooms or sequences 
of classrooms are homogeneous across students, but that is a standard assumption in this literature. See for example …  
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Parental reactions are likely to vary with the setting and the public inputs being offered. 

Fortunately, we have access to detailed data on parental investments, although it is only available for a 

single year: the end of the first year of elementary school (kindergarten). Using this dataset, Araujo et al. 

(2016) show that parental investments (in time or goods) do not react when their children are randomly 

assigned to high vs low quality classrooms (these are precisely estimated zero impacts).6 

Interestingly, this lack of reaction is not due parents having a misperception of the quality of the 

classroom attended by their children. Using survey data from parents, Araujo et al (2016) show that 

parental perceptions of classroom quality are strongly correlated with objective measures of quality for the 

classrooms attended by their children (and to which they were randomly assigned). 

The lack of similar data for future grades prevents us from generalizing these parental responses 

to other grades. From what we can observe from the detailed data we have for first grade, our best guess 

is that parental reactions to school inputs may be relatively unimportant in our setting. If that is the case, 

we can interpret our results as characterizing important features of the production function of learning in 

schools, keeping home inputs fixed. 

In sum, in the setting that we study, we find that the productivity of classroom quality in one grade 

does not depend on the quality of the classroom experienced by that child in earlier grades. Rather, the 

production function of education is remarkably additive in classroom quality across different grades.  

We conclude with a discussion of why this might be the case in our data, and of the policy 

implications of our finding. Specifically, we note that, had we found  evidence of strong dynamic 

complementarities in classroom quality, a policy-maker assigning a limited number of high-quality teachers 

to classrooms would face a tradeoff between efficiency (the largest aggregate effect on learning would 

occur if the same children received a succession of high-quality teachers) and equity (it would be most 

equitable to spread high-quality teachers so that each child gets exposed to at least some very effective 

teachers).7 The absence of dynamic complementarities essentially eliminates this tradeoff for the 

policymaker. 

The rest of the paper proceeds as follows. In section 2 we describe the setting for our experiment 

and the data. Section 3 discusses methodology, and section 4 presents results. We conclude in section 5. 

 

 

 
6 Araujo et al (2016) show that most of their measures of parental investments are correlated with end of kindergarten 
test scores (math and language), even after controlling for pre-kindergarten vocabulary scores. 
7 In principle, this applies to high- or low-quality peers as well. If there are dynamic complementarities, the returns to 
being assigned to higher-quality peers would be larger for children who had been assigned to higher-quality peers in the 
past. 
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2. Setting and data 

We study student achievement in math and language in Ecuador, a middle-income country in South 

America. As is the case in most other Latin American countries, educational achievement of young children 

in Ecuador is low (Berlinski and Schady 2015). 

The data we use comes from an experiment in 204 schools. Each school has at least two 

classrooms per grade (most have exactly two). An incoming cohort of children was randomly assigned to 

kindergarten classrooms within schools in the 2012 school year.8 These children were randomly reassigned 

to 1st grade classrooms in 2013, to 2nd grade classrooms in 2014, to 3rd grade classrooms in 2015, to 4th 

grade classrooms in 2016, to 5th grade classrooms in 2017, and to 6th grade classrooms in 2018. Compliance 

with random assignment rules was very high—98.9 percent on average. As a result, children who were in 

our sample of schools for the entirety of the elementary school cycle were exposed to seven exogenous, 

orthogonal shocks to classroom quality.  

Random assignment means that we can deal effectively with concerns about any purposeful 

matching of students with teachers and peers, that often arise in non-experimental settings. Throughout 

the paper we work with a balanced panel of 8,780 children for whom we have baseline data on preschool 

attendance, maternal education, and wealth; their receptive vocabulary at the beginning of kindergarten, as 

measured by the Test de Vocabulario en Imágenes Peabody (TVIP), the Spanish version of the widely used 

Peabody Picture Vocabulary Test (PPVT) (Dunn et al. 1986);9 and math and language test results at the 

end of all seven grades. We provide further details on the assignment rules and compliance in Appendix 

A. 

At the end of each grade, we applied age-appropriate math and language tests to children, which 

we aggregate into a single score. We aggregate correct responses using Item Response Theory (IRT) scores. 

Since there are common items in tests given in adjacent grades, we are able to construct grade equivalent 

scores, separately for math and language. This procedure is fairly standard and is described in Appendix A 

(it is also similar to what is proposed in Attanasio et al 2020). The final score averages the individual math 

and language scores, with one-half the weight given to each. In contrast with several papers in education, 

which measure skills using standardized test scores, to estimate the production function of skill it is 

important that the test scores we use have a cardinal scale (e.g., Cunha et al 2010, Agostinelli and Wiswall 

 
8 These schools are a random sample of all public schools that had at least two kindergarten classrooms in the coastal 
region of the country. See Araujo et al. (2016) for details.   
9 Performance on this test at early ages has been shown to predict important outcomes in a variety of settings, including 
in Ecuador. Schady (2012) shows that children with low TVIP scores before they enter school are more likely to repeat 
grades and have lower scores on tests of math and reading in early elementary school in Ecuador; Schady et al. (2015) 
show that many children in Ecuador start school with substantial delays in receptive vocabulary, and that the difference 
in vocabulary between children of high and low socioeconomic status is constant throughout elementary school.  
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2016, Freyberger 2020). In our paper test scores are measured in grade equivalents, so a one unit increase 

in test scores is anchored to how much the median student in this sample learns in one year (alternatively, 

Cunha et al 2010 anchor test scores on a cardinal outcome measured in adulthood, such as schooling or 

earnings).10  

Table 1, Panel A, summarizes the characteristics of children and their families. Children were 

approximately five years old on the first day of kindergarten. Half of them are girls. At the time children 

enrolled in kindergarten, mothers were on average in their early thirties, and fathers were in their mid-

thirties. Education levels are similar for both parents—just under nine years of school (which corresponds 

to completed middle school). The average child in our sample has a TVIP score that places her more than 

1 standard deviation below the reference population that was used to norm the test, indicating that many 

children begin formal schooling with significant delays.11 

 Table 1, Panel B, summarizes the characteristics of teachers in our sample, separately by grade. 

Across grades, on average teachers are in their mid-40s. Almost all teachers are females in kindergarten, 

and the proportion of male teachers increases by grade. Kindergarten teachers are less experienced than 

those in other grades, and they are also less likely to be tenured (rather than working on a contract basis). 

The average class size in the schools we study is between 35 and 40 students. 

In Araujo et al. (2016) we discuss in detail the selection of schools in this study. We show that the 

characteristics of students and teachers in our sample are very similar to those of students and teachers in 

a nationally-representative sample of schools in Ecuador. 

The most important feature of our data relative to other longitudinal studies in schools is that, in 

our context, students are randomly assigned to classrooms in every grade. In Appendix A of Carneiro et 

al. (2021), replicated in Appendix B of this paper, we present a test of random assignment developed by 

Jochmans (2020), analogous to a standard balance test but adapted to our context with multiple classrooms 

(as opposed to a treatment and a control group). As expected, we do not reject the hypothesis that students 

were randomly assigned to classrooms. 

3. Empirical Strategy 

A. Visualizing our Data 

 Our goal is to examine how math and language achievement depend on the sequences of 

classrooms that students experience during elementary school. We classify each classroom (c) in grade (t) 

and school (s) according to its quality (𝑄𝑠𝑐𝑡). To help visualize the essence of our data it is helpful to 

 
10 Table A1 shows percentiles of the distribution of grade equivalent scores at the end of each grade. 
11 The TVIP was standardized on a sample of Mexican and Puerto Rican children. The test developers publish norms 
that set the mean at 100 and the standard deviation at 15 at each age (Dunn et al. 1986). 



 

8 
 

consider a simple example where classroom quality is discrete and takes only two values, high or good (G), 

and low or bad (B): 𝑄𝑠𝑐𝑡 = {𝐺𝑠𝑐𝑡 , 𝐵𝑠𝑐𝑡}. In practice, classrooms 𝐺𝑠𝑐𝑡 are those in which quality is above 

the grade- and school-specific mean, while classrooms 𝐵𝑠𝑐𝑡 are below this mean. Therefore, under this 

definition, quality is defined relatively to other classrooms in the same school. In each school there is 

always at least one G and one B classroom in each grade (since every school in our sample has at least 2 

classrooms per grade). 

At the end of kindergarten, each student experienced either a G or a B classroom. At the end of 

1st grade, a student could have been in one of four classroom sequences: 1) B in kindergarten and B in 1st 

grade, or BB; 2) B in kindergarten and G in 1st grade, or BG; 3) G in kindergarten and B in 1st grade, or GB; 

or 4) G in kindergarten and G in 1st grade, or GG. Each subsequent grade produces increasingly complex 

sequences of classroom assignment. By the end of 6th grade (the last year of elementary school) there are 

27 = 128 sequences of classroom quality any student could have experienced. 

Figure 1 shows the full set of sequences we can consider up to 4th grade (it is easy to imagine what 

happens in subsequent grades, but the diagram becomes too crowded to show in a single page). For 

example, students in the sequence GBBGB were in a high-quality classroom in kindergarten and in 3rd 

grade, but they were in a low-quality classroom in all other grades. Because of random assignment to 

classrooms within schools, the baseline observable and unobservable characteristics of students in each 

sequence are identical in expectation. 

Discretizing quality in this way greatly simplifies the description of our data, and it helps to 

visualize its basic features. We can group students in different cells, depending on the sequence of 

classrooms they experienced, denoted by 𝑄̃𝑡 = {𝑄𝑠𝑐0, … , 𝑄𝑠𝑐𝑡}. Average achievement (Y) at the end of 

grade t in each cell (where j is student) is: 

𝐸(𝑌𝑠𝑐𝑡𝑗|𝑄̃𝑡) = 𝐸(𝑌𝑠𝑐𝑡𝑗|𝑄𝑠𝑐0, … , 𝑄𝑠𝑐𝑡) 

It is then easy to represent graphically how learning depends on the sequence of G or B classrooms 

experienced by each student. This discretization of the data is only used in this section, for data description 

and visualization. Our main estimates in the remaining of the paper are based on a more standard 

framework where classroom inputs are continuous. 

In order to determine the sequences faced by each student, we first need to classify classrooms 

according to their relative quality. Throughout the paper we assume that all students in a given classroom 

experience the same level of classroom input (this standard assumption rules out, for example, the 

possibility that a teacher provides different inputs for students at the top or bottom of the class, or for 

boys and girls). However, the impact of that input on the learning of each student depends on the sequence 

of classroom inputs experienced by her in previous grades. 
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Unfortunately, classroom quality is unobserved, and needs to be estimated. In the literature on 

teacher quality, the quality of a classroom or a teacher is typically measured as the average learning of 

students in that classroom, or value added (VA). The starting point in this literature (e.g., Araujo et al. 

2016), is the following regression: 

𝑌𝑠𝑐𝑡𝑗 = 𝑋𝑠𝑐𝑡−1𝑗𝛾𝑡 + 𝛿𝑐𝑠𝑡 + 𝑢𝑠𝑐𝑡𝑗    (1) 

where 𝑌𝑠𝑐𝑡𝑗 is the achievement of student j in school s and classroom c at the end of grade t. 𝑋𝑠𝑐𝑡−1𝑗 is a 

vector of controls which includes child age, child gender, and a fourth order polynomial in 𝑌𝑠𝑐𝑡−1𝑗 (as in 

Chetty et al. 2014). 𝛿𝑐𝑠𝑡 is a classroom fixed effect, and 𝑢𝑠𝑐𝑡𝑗 is the residual in the model. 

Let 𝑣𝑠𝑐𝑡𝑗 = 𝑌𝑠𝑐𝑡𝑗 − 𝑋𝑠𝑐𝑡−1𝑗𝛾. 𝑣𝑠𝑐𝑡𝑗 measures the amount of learning (or growth in achievement, 

since the model controls for 𝑌𝑠𝑐𝑡−1𝑗) of student j in grade t. Then, we can compute VA as: 

𝑉𝐴𝑠𝑐𝑡 =
1

𝑁𝑠𝑐𝑡
∑ 𝑣𝑠𝑐𝑡𝑘

𝑁𝑠𝑐𝑡

𝑘=1

 

where 𝑁𝑠𝑐𝑡 is the number of students in school s, classroom c, and grade t. This means that VA is the 

average residual learning in the classroom during grade t, after accounting for achievement at the end of 

grade t-1 and other controls. 

Since the random assignment of students to classrooms occurs within (and not across) schools, 

we should demean classroom VA by its school (and grade) mean. Let 𝐶𝑠𝑡 be the number of classrooms, 

and 𝑁𝑠𝑡 the number of students in school s and grade t. School average VA (at grade t) is given by: 

𝑉𝐴̅̅ ̅̅
𝑠𝑡
 = ∑

𝑁𝑠𝑐𝑡

𝑁𝑠𝑡

𝑉𝐴𝑠𝑐𝑡
 

𝐶𝑠𝑡

𝑐=1

     (2) 

Finally, 𝛼𝑠𝑐𝑡 = 𝑉𝐴𝑠𝑐𝑡 − 𝑉𝐴̅̅ ̅̅
𝑠𝑡 denotes the demeaned classroom effect. 

 One important drawback of the standard VA literature is that it assumes that learning is a linear 

function of classroom quality. The resulting VA estimates are only valid under this assumption. This 

framework does not allow, for example, classroom inputs in different grades to be complements, nor does 

it allow for diminishing returns to accumulated classroom quality over time. 

 However, even if this assumption is relaxed (as in this paper), notice that if there is random 

assignment of students to classrooms in each grade, then students in different classrooms (within the same 

school) will on average have experienced similar sequences of classroom qualities in previous grades. 

Therefore, if at the end of a grade VA differs across classrooms, with one classroom having a higher VA 

than the other, it is reasonable to infer that students in the classroom with a high VA received a higher 

level of classroom input than students in a classroom with low VA. This means that we can use the standard 
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VA model to classify classrooms in G and B categories. In this section we define G and B classrooms as 

follows:  

𝛼𝑠𝑐𝑡
 > 0

 
⇒ 𝐺𝑐𝑠𝑡 = 1           

𝛼𝑠𝑐𝑡
 ≤ 0

 
⇒ 𝐵𝑐𝑠𝑡 = 1     (3) 

Using this G-B classification we group students into cells, depending on the sequence of G-B 

classroom assignments they experienced up to a given grade. Let 𝐺𝐵𝑡𝑗
𝑚𝑡 be an indicator variable that takes 

value 1 if child j in grade t experienced sequence 𝑚𝑡 = (𝐺𝑐𝑠0𝑗 , … , 𝐺𝑐𝑠𝑡𝑗), where t=K,…,6. 

In order to estimate average learning per cell we run the following regression for each t: 

𝑌𝑠𝑐𝑡𝑗 = ∑ 𝜅𝑚𝑡𝐺𝐵𝑡𝑗
𝑚𝑡

𝑚𝑡

+ 𝑋𝑠𝑐0𝑗𝜁𝑡 + 𝜗𝑠𝑡 + 𝑤𝑠𝑐𝑡𝑗    (4) 

where 𝜗𝑠𝑡 is a school by grade fixed effect; 𝑋𝑠𝑐0𝑗 includes age, gender, a wealth index, maternal education 

(both measured at baseline), and a fourth order polynomial in the baseline vocabulary score (the only 

assessment we conducted at baseline); 𝑌𝑠𝑐𝑡𝑗 is the test score (math and language aggregate) at the end of 

grade t; and 𝑤𝑠𝑐𝑡𝑗 is a residual. Notice that for each child j, 𝐺𝐵𝑡𝑗
𝑚𝑡 takes value 1 only for the sequence the 

child experienced, and 0 for all other sequences. There is a different regression for each grade t. It is 

essential to include school fixed effects in equation (4) because the randomization of students to 

classrooms occurs only within schools. With this representation of the data, we can easily visualize how 

achievement depends on the sequence of classroom assignments up to a grade, and to what extent dynamic 

complementarities are likely to be important.12 

 There is one important caveat to the procedures we implement in this paper. Unfortunately, we do 

not observe parental inputs in our dataset. Therefore, we conflate the effects of classroom quality on learning 

with the effects of parental responses to classroom quality. It is possible, for example, that there are strong 

 
12 One potential issue with this procedure is that data on the same individuals shows up on both sides of the regression, 
since the GB indicators and sequences are constructed using all the observations in each classroom. The fact that the GB 
indicators are all discrete and the sequences are quite complex is likely to attenuate this problem substantially. In fact, we 
show below and in Appendix D that if we estimate equation (4) using baseline scores as the outcome the estimates of 

𝜅𝑚𝑡  are small and statistically indistinguishable from zero, suggesting that this problem is not a major threat to our 

results. Alternatively, a standard way to address this is to use leave-one-out means when constructing VA: 𝑉𝐴𝑠𝑐𝑡 =
1

𝑁𝑠𝑐𝑡−1
∑ 𝑣𝑠𝑐𝑡𝑘

𝑁𝑠𝑐𝑡
𝑘=1,𝑘≠𝑖 . However, this produces a strong negative correlation between an individual’s achievement and 

the leave-one-out VA measure corresponding to her, a problem sometimes labeled as “exclusion bias” (e.g., Jochmans, 
2021, Caeyers and Fafchamps, 2020). In an attempt to address this, when calculating the mean VA in the school for 
individual i, we leave out not only individual i but also individuals similar to i (with the same classroom achievement 
rank) from the other classrooms in the school. We show in Appendix E, and discuss below, estimates based on leave-
one-out VA measures, and how they are very similar to the ones presented in the main body of the paper. 
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dynamic complementarities between school inputs in different grades, but which are partly or wholly undone 

by parental reactions to these inputs. 

B. Testing for Additive Classroom Effects 

The data visualization exercise just described is intuitive and simple to implement, but required us 

to discretize classroom quality, which is quite artificial. Going back to the standard VA model for 

classroom c in school s and grade t, described in equation (1), we see that it considers test scores for student 

j at the end of grade t (𝑌𝑠𝑐𝑡𝑗) as a linear function of classroom indicators (𝛿𝑐𝑠𝑡), student level controls 

(𝑋𝑠𝑐𝑡𝑗), and a residual (𝑢𝑠𝑐𝑡𝑗). A typical control variable is the lagged test score (𝑌𝑠𝑐𝑡−1𝑗). Under a 

conditional random assignment assumption, 𝛿𝑐𝑠𝑡 corresponds to the causal impact of being assigned to 

classroom c on test scores at the end of grade t. 𝛿𝑐𝑠𝑡 includes the impact of teachers and other classroom 

shocks (to separate the two one needs data on multiple cohorts of students taught by the same teacher). 

 Since the assignment of students to classrooms is random in each grade, we do not have to assume 

that the assignment is random conditional on controls as is standard in the literature relying on 

observational data, nor do we necessarily need to include controls in the model. We nevertheless include 

controls to absorb variance in the outcome and increase the power of our tests. Furthermore, since the 

randomization occurs only within schools, we need to include school fixed effects in the model, which 

means that 𝛿𝑐𝑠𝑡 can only capture within school variation in classroom and teacher quality. 

 To test formally for the presence of interactions between classroom or teacher quality in different 

grades in the production of learning, Kinsler (2016) proposes augmenting the model in equation (1) by 

including indicators for current and lagged classroom assignment. Kinsler (2016) begins by taking the 

standard model which assumes additivity of classroom effects over time, and from which we get the 

following equation: 

𝑌𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝑋𝑠𝑐0…𝑐𝑡𝑡𝑗𝛾𝑡 + ∑ 𝛿𝑐𝑘𝑠𝑡

𝑡

𝑘=0

+ 𝑢𝑠𝑐0…𝑐𝑡𝑡𝑗    (5) 

This is a simple extension of equation (1), where the indices of the variables in the regression have been 

changed to include the entire history of classroom assignment up to grade t: 𝑐0 … 𝑐𝑡. In this model, the 

impacts of classroom qualities in different grades on learning at the end of grade t is additive in classroom 

quality in each grade, ruling out any complementarities between classroom quality across grades. 

 We then extend the model by saturating it with indicators for the whole sequence of classroom 

assignments. Not all of them can be added to model in (5) because they would be colinear with the main 

classroom effects. The model becomes: 
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𝑌𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝑋𝑠𝑐0…𝑐𝑡𝑡𝑗𝛾𝑡 + ∑ 𝛿𝑐𝑘𝑠𝑡

𝑡

𝑘=0

+ 𝜑𝑠𝑐0…𝑐𝑡𝑡 + 𝑢𝑠𝑐0…𝑐𝑡𝑡𝑗    (6) 

𝜑𝑠𝑐0…𝑐𝑡𝑡 is the impact of the sequence of classroom assignments (𝑐0 … 𝑐𝑡) over and above the base impacts 

of classrooms in each grade (𝛿𝑐𝑘𝑠𝑡). 

 Since the randomization of students to classrooms happens only within schools, one also needs 

to include school fixed effects in the model, and then do the appropriate normalizations with the remaining 

classroom fixed effects (and interactions). This means that we are only able to estimate the importance of 

dynamic complementarities across inputs within schools. These are likely to vary less than inputs across 

schools, but there is still substantial variation in classroom (and teacher) quality to explore within schools 

(e.g., Araujo et al, 2016). 

Kinsler (2016) develops a procedure to test whether the interaction terms, 𝜑𝑠𝑐0…𝑐𝑡𝑡, belong in the 

model (i.e., a test of the hypothesis that they are all equal to zero). In principle one could simply use an F-

test. In Kinsler (2016), however, the very large number of constraints to be tested always leads to very low 

p-values, which he argues are meaningless. Therefore, he proposes another procedure, which we 

implement here, and which starts by computing school specific F-tests of whether the interaction terms 

are equal to zero, and then calculates the proportion of schools in which this F-test indicates a rejection 

of the null hypothesis that the model is additive (all interactions equal to zero). Finally, one can compare 

this proportion with what would be expected if the null hypothesis was true (e.g., if the level of significance 

used in the test is 5%, under the null we would expect this hypothesis to be rejected in 5% of the schools). 

C. Estimating a CES Production Function 

 The procedure just described provides a formal test of the importance of dynamic interactions 

between classroom inputs, but it does not give us quantitative assessment of their magnitude. Therefore, 

in this section we describe the estimation of a production function of achievement, which we then use to 

quantify the impacts of different sequences of inputs on student achievement. 

We model learning at the end of grade t as a function of the sequence of classroom qualities 

experienced up to that grade: 

𝑌𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝐴𝑠𝑐0…𝑐𝑡𝑡𝑗 (∑ 𝜋𝑐𝑘𝑠𝑡𝛿𝑐𝑠𝑘
𝜌𝑡

𝑡

𝑘=0

)

𝜃𝑡
𝜌𝑡

𝑢𝑠𝑐0…𝑐𝑡𝑡𝑗    (7) 

As before, 𝑌𝑠𝑐0…𝑐𝑡𝑡𝑗 is learning at the end of grade t and 𝛿𝑐𝑘𝑠𝑘 is classroom quality experienced by a student 

assigned to classroom 𝑐𝑘 in grade k. The parameters of this CES function are all grade-specific. 𝜌𝑡 (where 

−∞ < 𝜌𝑡 < 1) determines the degree of substitution between classroom inputs in different grades (𝜎𝑡 =
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1

1−𝜌𝑡
 is the elasticity of substitution), 𝜃𝑡 determines the returns to scale, and 𝜋𝑐𝑘𝑠𝑡 give us the relative 

productivity of classroom quality in each grade (we use the following normalization: ∑ 𝜋𝑐𝑘𝑠𝑡
𝑡
𝑘=0 = 1). 

 𝐴𝑠𝑐0…𝑐𝑡𝑡𝑗 is a productivity parameter that includes school fixed effects (𝜗𝑠𝑡) as well as individual level 

observables (𝑋𝑠𝑐0…𝑐𝑡𝑡𝑗, consisting of test scores, maternal education, and an index of household wealth, all 

measured at baseline, i.e., at the beginning of kindergarten). We assume that 𝑙𝑛𝐴𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝜗𝑠𝑡 +

𝑋𝑠𝑐0…𝑐𝑡𝑡𝑗𝛾𝑡. 𝑢𝑠𝑐0…𝑐𝑡𝑡𝑗 is an individual level i.i.d. shock. 

 As discussed above, classroom quality, 𝛿𝑐𝑘𝑠𝑘, is unobserved. However, unlike most papers in the 

teacher VA literature, we assume that learning is a potentially non-linear function of classroom quality in 

different grades. This means that we cannot rely on additive linear VA models to recover 𝛿𝑐𝑘𝑠𝑘. Instead, 

𝛿𝑐𝑘𝑠𝑘 needs to be estimated together with the parameters of the production function. 

Typically, it would not be possible to estimate a production function with unobserved inputs. The 

reason this is feasible here is because, as stated above, we assume that all students in a classroom receive 

the same level of input (see also the identification discussion in Appendix C). It is this important (but 

standard) assumption that allows us to recover simultaneously the classroom input (which shows up as a 

classroom fixed effect in the model) and the parameters of the production function. Although we assume 

the classroom input (or fixed effect) to be the same for all students in the classroom, we depart from the 

literature by allowing the impact of classroom input in one grade to vary across students in the same 

classroom, depending on the history of classroom inputs they have experienced up to that grade. 

 The production function in (7) is also different in one important aspect from the specifications in 

other recent papers such as, for example, Cunha et al (2010), Agostinelli and Wiswall (2016), or Attanasio 

et al (2020a). In those papers the production function has a first order Markov structure, where skills in 

period t, say 𝑌𝑡𝑗, depend on skills in period t-1, 𝑌𝑡−1𝑗, and inputs in period t, 𝛿𝑡𝑗: 𝑌𝑡𝑗 = 𝑓𝑡(𝑌𝑡−1𝑗, 𝛿𝑡𝑗), 

where 𝑓𝑡(. ) is the period t production function. In other words, all interactions between inputs in period 

t (𝛿𝑡𝑗) and inputs in prior periods (𝛿0𝑗 … 𝛿𝑡−1𝑗) operate through lagged skills (𝑌𝑡−1𝑗). Our paper relaxes 

this assumption, which is found to be too restrictive in Attanasio et al (2020b). 

 Equation  

 defines a system of equations, one for each grade 𝑡 = 0 … 6. In order to estimate it, we start by taking 

logs:  

𝑙𝑛𝑌𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝜇𝑠𝑡 + 𝑋𝑠𝑐0…𝑐𝑡𝑡𝑗𝛾𝑡 +
𝜃𝑡

𝜌𝑡

𝑙𝑛 (∑ 𝜋𝑐𝑘𝑠𝑡𝛿𝑐𝑠𝑘
𝜌𝑡

𝑡

𝑘=0

) + 𝑣𝑠𝑐0…𝑐𝑡𝑡𝑗    (8) 
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We define 𝑣𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝑙𝑛(𝑢𝑠𝑐0…𝑐𝑡𝑡𝑗). In addition, we need to initialize the system. Notice that the implied 

equation for grade 0 (kindergarten) only has one classroom input, and therefore it simplifies to: 

𝑙𝑛𝑌𝑠𝑐00𝑗 = 𝜇𝑠0 + 𝑋𝑠𝑐00𝑗𝛾0 + 𝜃0 ln (𝜋𝑐0𝑠0

1
𝜌0) + 𝜃0𝑙𝑛(𝛿𝑐𝑠0) + 𝑣𝑠𝑐00𝑗    (9) 

This is a standard VA equation for kindergarten, where 𝑙𝑛𝑌𝑠𝑐00𝑗 is a linear function of classroom 

assignment indicators, which are estimated to be 𝜃0𝑙𝑛(𝛿𝑐𝑠0). 𝜃0 is normalized to be equal to 1. The 𝜃𝑡 

parameters in the remaining grades can then be freely estimated. 

 As discussed above, the assumption that classroom inputs are common to all students in a 

particular classroom means that the parameters of the system of equations (8) and (9) (one equation per 

grade) and the vector of classroom qualities are identified, and should be estimated simultaneously. In 

practice, it is computationally easier to proceed iteratively, one grade at a time, starting with the lower 

grades. 

 The estimation procedure, which approaches each grade in sequence, is described in detail in 

Appendix C. We start from equation (9), 𝑡 = 0, from which we recover estimates of 𝛿𝑐𝑠0 for each 

classroom (and we estimate the remaining parameters of the model, which are not of substantive interest). 

From the equation for 1st grade (equation (8) for 𝑡 = 1), we use 𝛿𝑐𝑠0 from the 𝑡 = 0 equation, and we 

estimate all the parameters of the production function (𝜃1, 𝜌1, 𝜋𝑐0𝑠1) together with 𝛿𝑐𝑠1 (as well as the 

parameters on the controls). In grade t, we use {𝛿𝑐𝑠0 … 𝛿𝑐𝑠𝑡−1} obtained from the previous grade equations, 

and we estimate (𝜃𝑡, 𝜌𝑡, 𝜋𝑐0𝑠𝑡 , … , 𝜋𝑐𝑡−1𝑠𝑡) together with 𝛿𝑐𝑠𝑡. 

4. Results 

A. Sequences of High- and Low-Quality Classrooms 

We start by a simple visualization of the data. We discretize classroom quality in each grade to take 

only two values, G and B, and estimate the average learning for children in each sequence of (discretized) 

classroom qualities across grades, as in equation (4). The impact of each sequence is reported relative to 

the worst possible sequence (being in the B classroom in every grade). Therefore, there are 3 parameters 

to estimate at the end of 1st grade, 7 at the end of 2nd grade, 15 at the end of 3rd grade, 31 at the end of 4th 

grade, 63 at the end of 5th grade, and 127 at the end of 6th grade. These estimates are displayed graphically 

in Figure 2. 

The bars in the six panels of Figure 2 have different colors, and are ordered from left to right, 

according to the number of G classrooms in the sequence. Take, for example, the first panel, which shows 

impacts at the end of 1st grade. The left-most bar in this panel shows that students who have a B classroom 

in kindergarten and a G classroom in 1st grade (a BG sequence) have test scores that are 0.14 grade 
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equivalents (GE) higher than those who have a B classroom both in kindergarten and 1st grade (a BB 

sequence). Those in a GG sequence have test scores that are 0.21 GE higher than those in a BB sequence. 

Taken together, the panels in Figure 2 show that larger numbers of G classrooms in a sequence 

generally lead to higher achievement, as one would expect. At the end of 6th grade, students who were in 

a G classroom for seven years in a row (sequence GGGGGGG) have scores that are 1.74 GE higher than 

those who were in a B classroom in every grade, a remarkably large difference. 

Keeping constant the number of G classrooms in the sequence, the bars are not of equal height. 

This suggests that the specific grades in which G classrooms appear within each sequence (and not just the 

number of G classrooms) may be important. In particular, the bars are frequently taller in sequences in 

which G classrooms are more recent. For example, in Panel B, taking sequences with only one G classroom, 

the bar corresponding to BBG is taller than those corresponding to BGB or GBB. If we look at sequences 

with two G classrooms, the bar for GGB is shorter than those corresponding to BGG or GBG. This is 

consistent with the idea that there is depreciation (or “fade-out”) of the effects of classroom inputs (i.e., 

more recent inputs have larger impacts), as documented in several papers on teacher effects estimated with 

U.S. data (for example, Chetty et al. 2014, Jacob et al. 2010).  

Figure 2 also suggests that the timing of classroom quality could matter beyond depreciation. Even 

keeping the number of good classrooms in a sequence fixed, it is not always true that sequences with more 

recent good classrooms are the ones where student achievement is the highest. For example, if we take the 

impact of the sequences with three G classrooms on 3rd grade achievement (the bars corresponding to 

BGGG, GBGG, GGBG, and GGGB in the 3rd grade panel), the impact of BGGG is lower than the impact 

of GBGG.13 

It is possible to aggregate the impacts of the various sequences on learning in different ways, but 

one that is both particularly simple and instructive for the purposes of our paper is shown in Figure 

3. In each panel of this figure, we average the height of the bars of the same color in the 

corresponding panels of Figure 2. Take, for example, the 3rd grade panel. The zero good 

classrooms case is represented in every figure as a benchmark, although the height of that bar is 

by definition zero. Then, the first actual bar in the 3rd grade panel of Figure 3 (labeled “One”, for 

 
13 As an additional check of the validity of our procedure we re-estimate equation (4) using baseline test scores (TVIP) as 
the outcome. Since students were randomly assigned to sequences, we should not observe any impact of being assigned 
to a sequence on baseline test scores, which are measured right at the start of elementary school. In figure D1 in 
Appendix D we replicate Figure 2 for the case where TVIP scores are used as the outcome, the scale of the graphs being 
the same as in Figure 2. Impacts of being assigned to a sequence on TVIP scores are very small. We do not reject that 
they are equal to zero in grade 1 through 5 for which the p-values of the test that the coefficients on the sequences are 
jointly equal to zero are 0.31, 0.58, 0.73, 0.87 and 0.43 respectively. Surprisingly we reject this hypothesis in grade 6 (p-
value = 0.01), although we can see that the bars in figure D1 are both negative and positive and generally small in 
magnitude, so this may be due to the fact that we are testing a large number (127) of hypotheses simultaneously. 
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one good classroom) shows the average height of the bars corresponding to the sequences of 

classrooms with only one good classroom in the 3rd grade panel of Figure 2 (first group of four 

bars). The second bar in the 3rd grade panel of Figure 3 (labeled “Two”) averages the height of all 

the bars in the analogous panel of Figure 2 corresponding to sequences of classrooms with exactly 

two good classrooms. The third bar in the 3rd grade panel of Figure 3, corresponds to the average 

of bars for the three good classroom sequences in the 3rd grade panel in Figure 2. The last bars in 

both 3rd grade panels of Figures 2 and 3 are the same, because at the end of third grade there is 

only one sequence with four good classrooms. 

In each panel of Figure 3 we overlay the bars with a line corresponding to a linear regression of 

the height of each bar on the number of good classrooms they represent (including 0 good classrooms, 

which has an implicit bar of height equal to zero). 

It is striking that for the first three panels (1st to 3rd grades) the linear regression fit is close to 

perfect, indicating that achievement is a linear function of the number of good classrooms in the sequence. 

In the remaining panels, there are deviations from linearity but they are small. Furthermore, we should 

also note that the sample size for each bar becomes smaller for later grades, because the overall sample 

size has to be split across a larger number of bars. This means that sampling error for each bar is larger for 

later than for earlier grades. Overall, we cannot reject for any grade that achievement is a linear function 

of the number of good classrooms in the sequence. 

This (perhaps surprisingly) linearity suggests that there are no strong dynamic complementarities 

in our data. If these were important, we would expect achievement to be a convex function of the number 

of good classrooms in each sequence, because the marginal impact of an additional high-quality classroom 

would increase with the number of high-quality classrooms experienced previously in each sequence.14 

B. Testing for Complementarity in the Impacts of Classroom Assignment on Learning 

 We now turn to the test of complementarity proposed in Kinsler (2016), and which consists of 

comparing the fit of the models in equations (5) and (6). In particular, we test whether the classroom 

interaction terms in equation (6) are jointly equal to zero. 

We conduct this test at the end of each grade, from 1st to 6th grade (since it only makes sense to 

do it when there are at least two grades to consider). The number of classroom effects and interactions in 

the model increases with the grade we consider, since we interact classroom effects for two grades at the 

end of 1st grade, but we interact classroom effects for seven grades at the end of 6th grade. We start by 

using only controls (test scores, maternal education, and household wealth) measured at baseline, which 

 
14 Appendix E shows that results are essentially the same when using leave-one-out measures of classroom and school 
VA to construct the GB sequences. 
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means that the set of indicators for each sequence captures the total impact of the sequence of classroom 

quality up to grade t on achievement at the end of that grade. The results are shown in Panel A of Table 

2. Panel B, which is similar to A, shows the case where controls (in particular, lagged test scores) are 

measured in t-1, which means that the indicators for classroom sequences capture the impact of the 

sequence of classroom quality up to grade t on learning (or VA) occurring only in that grade. 

In the first column of Table 2 we report the proportion schools for which we reject the null 

hypothesis of no interactions between classroom effects on student achievement, using a significance level 

of 10%. Each row corresponds to a different grade. Across all grades, the proportion of schools for which 

we reject the null is approximately 10%. This is exactly what we would expect if the null hypothesis is true. 

In the remaining two columns we document that the proportion of schools for which we reject 

the null of no interactions at the 5% level is approximately 5%. If the significance level used is 1%, then 

the proportion of schools for which the hypothesis is rejected is approximately 1% across grades. Again, 

this is what we would expect under the null hypothesis of no interactions between classroom effects.15 In 

Panel B we show that the results are very similar if we control for test scores in grade t-1 (𝑌𝑠𝑐0…𝑐𝑡𝑡−1𝑗), as 

opposed to baseline test scores (𝑌𝑠𝑐0…𝑐𝑡0𝑗). 

In sum, we cannot reject that the model is additive in classroom quality or, in other words, that 

there are no strong dynamic complementarities between classroom inputs in different grades. 

C. Estimates of the Production Function 

Finally, we show the estimates of a CES production function, which allow us to simulate the 

impacts on learning of being exposed to different counterfactual sequences of classroom quality, or 

classroom input (two expressions that we use interchangeably in this section). As discussed above, we 

allow for grade-specific production functions. The estimated parameters (𝜃𝑡, 𝜌𝑡, 𝜋𝑐𝑘𝑠𝑡) as well as the 

estimated classroom inputs (𝛿𝑐𝑠𝑘) are reported in Tables C1 and C2 in the appendix. In Table 3 we show 

the implied estimates of the elasticity of substitution (
1

1−𝜌𝑡
) between classroom inputs in different grades. 

The well-known Cobb-Douglas production function is a useful benchmark, since it has an elasticity of 

substitution equal to 1 (𝜌𝑡 = 0). For the case of the CES function we estimate, the elasticity of substitution 

can be as low as zero (perfect complements) or as high as +∞ (perfect substitutes). 

 
15 We should also note that even if we had just performed a standard joint F-test to the overall sample, as opposed to 
doing it school by school, the p-values at the end of grades 1 through 6 would be 0.2899, 0.9433, 0.7653, 0.7092, 0.5810 
and 0.2183, respectively, which also means that we do not reject the null that there are no dynamic interactions between 
classroom inputs. This is in spite of the fact that (as in Kinsler, 2016) we are testing a large number of restrictions. 
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 Classroom inputs are most complementary across grades for test scores at the end of 1st grade, 

when we only have two inputs: classroom quality in kindergarten and 1st grade. Classroom inputs are 

considerably more substitutable across grades in the production of achievement at the end of all the 

remaining grades. Furthermore, the elasticity of substitution for all these grades is above 1.8. 

 It is helpful to visualize what these estimates imply for the production of achievement. To do so 

we simulate average predicted scores for different combinations of classroom inputs. The different panels 

in Figure 4 show achievement at the end of each grade as a function of classroom quality in that grade, 

keeping fixed classroom quality in previous grades.16 Each panel has five lines. Three of these are thick 

lines, and they differ between themselves because they fix previous classroom quality at different values: 

the thick solid line (labeled “P50”) fixes previous classroom quality at the median value in each grade, the 

thick dotted line (“P25”) fixes these values at the 25th percentile, and the thick dashed line (“P75”) fixes 

these values at the 75th percentile. For example, in the 1st grade panel, the P25 line shows how achievement 

at the end of 1st grade depends on 1st grade classroom quality when kindergarten classroom quality is fixed 

at the 25th percentile of the distribution. As another example, the P75 line in the 5th grade panel shows 

how achievement at the end of 5th grade depends on fifth grade classroom quality when classroom quality 

in each of the other grades is fixed at the 75th percentile of the within-grade distribution of classroom 

quality. 

As expected, the three lines are upward sloping in all panels, indicating that the marginal product 

of classroom quality is always positive. For the same reason, in every panel the P75 line is everywhere 

above the P50 line, which in turn is above the P25 line. For 1st and 2nd grade it is difficult to distinguish 

the three lines. This is because the more recent inputs are considerably more important than the lagged 

inputs (especially in 1st grade), and because the most recent input has a higher variance than the lagged 

inputs (especially in 2nd grade). However, as can be seen in the figure, we see these lines become more 

clearly apart as we look at production functions at higher grades, probably because more inputs have been 

accumulated in previous grades. 

The remaining two lines in each panel are a thin dashed line (labeled “P75-Substitutes”) and a thin 

dotted line (“P25-Substitutes”), which are superimposed respectively on the thick dashed and thick dotted 

lines just described. They are meant to represent how the production function would look like if classroom 

qualities were perfect substitutes over time. To draw them, we first calculate the difference between the 

average achievement across the thick dashed (dotted) and the thick solid lines, and then we add this 

 
16 To minimize the influence of extreme values over which it may be difficult to estimate the production function, we 
limit the support of classroom quality over which we represent it, so we consider only values of the input between the 
10th and 90th percentiles of its distribution. 
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difference to the thick solid line. In other words, we ask what the production function would look like if 

exposure to different classroom qualities in previous grades only moved the production function (as a 

function of the current quality keeping previous qualities fixed) in a parallel way, without affecting its slope. 

It is remarkable how small are the differences between the thick and thin lines across all panels. In 

other words, inputs in different grades are close to perfect substitutes. Overall, this is consistent with the 

estimated elasticities of substitution in Table 3, which are typically around 2 and 3. 

The exception is the case of 1st grade, which has the lowest elasticity of substitution, but in spite 

of that we cannot distinguish the various lines in the corresponding panel of Figure 4. Recall that there are 

only two inputs to consider up to end of 1st grade achievement: kindergarten and 1st grade classroom 

quality. We estimate that even though these two inputs appear to be complementary, the productivity of 

the kindergarten input is much lower than that of the 1st grade input, so we can barely see any differences 

between the various lines in the corresponding panel of Figure 4. 

Figure 5 replicates Figure 4, but instead of evaluating the relationship between achievement and 

classroom inputs in grade t at the 25th, 50th, and 75th percentiles of classroom inputs in all previous grades, 

we do this at percentiles 10, 50 and 90. The main reason for this exercise is that dynamic complementarities 

may be especially salient if we consider large shifts in inputs. In other words, perhaps there is not much 

difference in the marginal product of inputs in t when inputs in previous grades are either at the 25th or 

75th percentiles of their distributions, but there may be more visible differences in this same marginal 

product when we evaluate the production function at the 10th and 90th percentiles of the distributions of 

previous inputs. 

We see that, in fact, this may be true, especially when we consider the last grades of elementary 

school (perhaps because, for example, the differences between the P10 and P90 lines correspond to 6 years 

of accumulated skills at the end of 6th grade, but only 2 years of accumulated skills at the end of 2nd grade). 

For both the P10 and P90 in later grades there are more visible differences across panels between the 

estimated production function and the simulated production function with perfect substitutability, and 

these departures from linearity suggest that there could be some dynamic complementarity between inputs 

(since the gap between the P10 and P90 lines open up slightly more with increases in current classroom 

quality for the actual production function, than for the simulated production function with perfect 

substitutability). That said, overall, these still represent small departures from the case of perfect 

substitutes. 

 To summarize, when assessing to what extent dynamic complementarity is an important feature 

of our data one should take the entire evidence presented in the paper together. We started by showing 

that learning is an approximately linear function of the number of good classrooms a child was assigned 
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to. Next, we documented that there is no strong evidence that interactions between classroom quality in 

different grades are important to explain student achievement. Finally, we showed that, for almost all 

grades, the elasticity of substitution between classroom inputs in different periods is quite high. Taken 

together, these results suggest that dynamic complementarity between inputs in different grades is unlikely 

to be an important feature of our data. 

5. Conclusion 

This paper estimates how classroom quality in different grades in elementary school affects 

achievement. It focuses on whether there are dynamic interactions between classroom inputs across 

grades. 

We use data from a unique experiment in elementary schools in Ecuador, where, within each 

school, students were randomly assigned to classrooms in every grade, between kindergarten and 6th grade. 

This ensures that each student was exposed to a sequence of seven exogenous, orthogonal shocks to skill 

formation in elementary school. 

Using a variety of approaches, we do not uncover evidence of dynamic complementarities in 

classroom quality across grades. The productivity of classroom quality in one grade does not depend on 

the quality experienced by children in earlier grades. Rather, the production function of education is 

remarkably additive in classroom quality across different grades. 

We show this by documenting that: 1) in a model with only two categories of classroom quality, 

good and bad, learning is a linear function of the number of good classrooms experienced up to a grade; 

2) in a flexible model where learning is a function of classroom assignments in each grade, there is no 

evidence of strong interactions between classroom effects across grades; 3) when estimating a CES 

production function, the implied elasticity of substitution between classroom inputs across grades is 

generally large, indicating that classroom inputs in different grades are highly substitutable. 

This is perhaps a surprising result, at least at first sight. As Heckman has emphasized in several 

papers, the idea that skill begets skill (for example, Heckman, 2000) is an intuitive description of the learning 

process. If that were the case, a good 1st grade classroom would help students learn the 1st grade material 

well, give them solid building blocks for 2nd grade learning and, therefore, allow them to benefit more from 

a high-quality learning environment in 2nd grade. Our results suggest, however, that the production process 

in schools in the setting we study does not occur in this way.  

There would be clear benefits to future research to understand the absence of dynamic 

complementarity, and whether this result holds in other settings. It could be that teachers effectively tailor 

their instruction to specific children, so that each child benefits equally from instruction in a given grade 

(regardless of the quality of the classroom she was exposed to in earlier grades). Although this would be 
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consistent with the results we observe, it seems unlikely to us given overall low teacher quality in Ecuador, 

and the large number of children in each classroom—between 35 and 40, on average.17  

Alternatively, teachers may not tailor instruction to individual students, but they may focus on 

material that is particularly relevant for lagging students.18 That is, if the input is defined as relevant material 

covered in class, teachers may provide more of that input to students who had low-quality classrooms in 

earlier grade(s). In this scenario, there could be dynamic complementarities in the learning process of 

individual children, but teachers in essence offset these complementarities. Or, perhaps, it is parents who 

offset dynamic complementarities, by making larger investments in children who had worse classrooms in 

the past—although in our earlier work on kindergarten we found no evidence of such offsetting behaviors 

by parents (see Araujo et al. 2016).  

More generally, we stress that this is a literature where inputs are hard to define, observe, and 

measure. The parameters of the production function may not be invariant to the choice of inputs that are 

estimated. Our paper shows, however, that if the input that is analyzed is classroom quality, measured by 

a broad aggregate such as classroom VA, the production function of skills in elementary school additive 

in classroom inputs, at least in the setting that we study.  

 
17 We note, also, that in almost none of the classrooms in our data is there a teacher’s aide, so the number of children in 
a classroom are, effectively, the number of children per teacher. 
18 Duflo et al. (2011) argue that the opposite occurs in elementary schools in Kenya. Rather, in their model teachers 
focus on the highest-performing children in a classroom because they seek to maximize the number of students who 
pass an exam that determines entrance into high school. 
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Figures and Tables 
 

Figure 1 – Sequences 

Note: This figure shows the sequences of classroom quality which are possible between kindergarten and fourth grade. G 

denotes a classroom with value added above the average in the school, where B denotes a classroom with below school 

average value added. 

  



 

25 
 

Figure 2: Impact of sequences of classroom quality on achievement

  

 

 

 

Note: Each panel in this figure (A, B, C, D, E and F) shows average residual learning at the end of each grade (1st, 2nd, 3rd, 
4th, 5th, and 6th) for students in different sequences of classroom quality. B denotes a bad classroom in the sequence and 
G denotes a good classroom in the sequences (so, for example, GBBGG in panel D means that, by the end of 4th grade, 
students in this sequence experienced an above school average classroom in kindergarten, 3rd and 4th grade, and a below 
school average classroom in the remaining grades). Residual learning is achievement in math and language at the end of a 
grade after controlling for age, gender, baseline TVIP, maternal education and wealth (as well as school fixed effects). 
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Figure 3: Impact of the number of good classrooms across grades on achievement 

 

Note: Each panel in this figure shows average residual learning at the end of each grade (1st, 2nd, 3rd, 4th, 5th, 6th) for students 
in sequences with different numbers of good classrooms, relatively to students with zero good classrooms up to the grade 
achievement is measured. Residual learning is achievement in math and language at the end of a grade after controlling for 
age, gender, baseline TVIP, maternal education and wealth (as well as school fixed effects). 
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Figure 4: Impact of classroom quality on achievement at different values (percentiles 25 and 75) 

of past classroom quality 

  

 

Note: Each panel in this figure shows predicted average residual learning at the end of each grade (1st, 2nd, 3rd, 4th, 5th, 6th) for students 

experiencing different levels of classroom quality in that grade, keeping classroom quality in each of the previous grades fixed at the 

25th (solid dotted line), 50th (solid line) and 75th percentiles (solid dashed line) of the distribution of classroom quality in those grades. 

Predictions are generated by the estimated CES production function for each grade, evaluated at the 10th, 25th, 50th, 75th and 90th 

percentiles of the distribution of inputs. Residual learning is achievement in math and language at the end of a grade after controlling 

for age, gender, baseline TVIP, maternal education and wealth, as well as school fixed effects. 
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Figure 5: Impact of classroom quality on achievement at different values (percentiles 10 and 90) 

of past classroom quality 

  

 

 

Note: Each panel in this figure shows predicted average residual learning at the end of each grade (1st, 2nd, 3rd, 4th, 5th, 6th) for students 
experiencing different levels of classroom quality in that grade, keeping classroom quality in each of the previous grades fixed at the 25th 
(solid dotted line), 50th (solid line) and 75th percentiles (solid dashed line) of the distribution of classroom quality in those grades. 
Predictions are generated by the estimated CES production function for each grade, evaluated at the 10th, 25th, 50th, 75th and 90th 
percentiles of the distribution of inputs. Residual learning is achievement in math and language at the end of a grade after controlling 

for age, gender, baseline TVIP, maternal education and wealth, as well as school fixed effects. 
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Table 1: Descriptive Statistics 

Panel A: Children  

Age (months) 67.498 

 (4.135) 

Proportion female 0.497 

 (0.500) 

TVIP 83.961 

 (16.685) 

Mother's age 30.524 

 (6.616) 

Fathers's age 34.744 

 (7.934) 

Mother's years of schooling 8.866 

 (3.756) 

Fathers's years of schooling 8.493 

 (3.747) 

Panel B: Teachers  

 

  

 (1) (2) (3) (4) (5) 

Kindergarten 1st grade 2nd grade 3rd grade 4th grade 

Age 42.232 45.060 46.130 43.936 43.948 
 (9.577) (10.689) (9.955) (10.656) (9.544) 
Proportion female 0.989 0.938 0.871 0.783 0.781 

 (0.105) (0.242) (0.336) (0.413) (0.414) 
Experience 14.914 18.986 20.323 17.983 17.181 
 (8.884) (10.448) (10.837) (11.042) (10.168) 
Proportion tenured 0.640 0.717 0.883 0.831 0.833 
 (0.481) (0.451) (0.321) (0.375) (0.373) 
Years of schooling 17.140 17.455 17.540 17.491 18.013 
 (1.932) (2.061) (2.530) (2.277) (2.431) 

Class size 34.619 37.892 39.544 37.262 38.762 
 (8.000) (7.479) (7.528) (6.685) (6.414) 
CLASS score 3.407 3.289 3.337 3.281 3.394 
 (0.283) (0.232) (0.242) (0.240) (0.185) 
Note: Panel A shows means and standard deviations of student and family characteristics in our sample. Panel B 
shows means and standard deviations of teacher characteristics and class size in each grade. The TVIP is the Test de 
Vocabulario en Imágenes Peabody, the Spanish version of the Peabody Picture Vocabulary Test (PPVT). The test is 
standardized using the tables provided by the test developers which set the mean at 100 and the standard deviation 

at 15 at each age. Standard errors in parentheses. 
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Table 2: Testing Interactions Between Classroom Effects in Different Grades 

 Fraction of schools with p-value less than 

 10% 5% 1% 

 Panel A - Control for Baseline Scores 

First Grade 0.09 0.03 0.00 

Second Grade 0.07 0.03 0.01 

Third Grade 0.12 0.05 0.01 

Fourth Grade 0.11 0.07 0.00 

Fifth Grade 0.12 0.06 0.01 

Sixth Grade 0.02 0.00 0.00 

 Panel B - Control for t-1 Scores 

First Grade 0.09 0.06 0.01 

Second Grade 0.10 0.05 0.01 

Third Grade 0.10 0.07 0.01 

Fourth Grade 0.10 0.04 0.01 

Fifth Grade 0.17 0.07 0.02 

Sixth Grade 0.05 0.02 0.02 
 

This table shows the proportion of schools at the end of each grade for which the p-value of the 

joint test that there are no interactions between classroom effects in different grades is less than 

10% (column 1), 5% (column 2), or 1% (column 3). For each grade, we regress achievement at the 

end of that grade on current and past classroom assignments and their interactions. We control for 

a quartic polynomial in baseline test scores, mothers’s education and and wealth index, as well as 

child gender and age. 
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Table 3: Estimates of the elasticity of substitution between classroom quality in different grades 

 Grade 

 1 2 3 4 5 6 

Elasticity of 
substitution 0.2 1.93 2.4 1.85 3.28 3.72 

(1/(1 − 𝜌)) (0.04) (0.13) (0.09) (0.01) (0.04) (0.04) 
This table shows estimates of the elasticity of substitution between classroom quality in different grades. This 

corresponds to 
1

1−𝜌
, where 𝜌 is a parameter in a CES production function (equation 8). Each column corresponds to a 

different production function, where the output is achievement at the end of grades 1 through 6, and inputs are all 
current and lagged levels of classroom quality. Standard errors are reported in parenthesis. 
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Appendices 

Appendix A – Grade Equivalent Scores 

We are able to link test scores across grades because there are common items that are 

administered across several grades, both for the math and language assessments. We use standard linking 

procedures, where we begin by estimating an unrestricted IRT model (for each subject) for end of 

kindergarten assessments. Then we estimate an IRT model for end of grade 1 assessment restricting the 

coefficients on the common items to be the same as in the kindergarten model. We proceed sequentially 

in a similar way until we reach end of sixth grade assessments, restricting the coefficients on common 

items to the coefficients on the same items estimated in previous grades. This procedure is also similar to 

what is used in Attanasio et al (2020). 

We pool together all assessments given in one subject in a given grade. Let 𝐷𝑖𝑗𝑠𝑡  be an indicator 

that takes value 1 if student i in grade t provided a correct answer to item j in subject s (math, language, 

or executive function). Let 𝜃𝑖𝑠𝑡 be the latent ability measure, and J be the total number of items in a 

given subject and grade (it can change with both subject and grade). The measurement system for subject 

j in grade t looks like: 

𝐷𝑖1𝑠𝑡 = 1[𝑎1𝑠𝑡 + 𝑏1𝑠𝑡𝜃𝑖𝑠𝑡 + 𝜀𝑖𝑗𝑠𝑡 > 0] 

… 

𝐷𝑖𝐽𝑠𝑡 = 1[𝑎𝐽𝑠𝑡 + 𝑏𝐽𝑠𝑡𝜃𝑖𝑠𝑡 + 𝜀𝑖𝐽𝑠𝑡 > 0] 

With logit errors we get the standard 2 parameter IRT model: 

Pr (𝐷𝑖1𝑠𝑡 = 1|𝜃𝑖𝑠𝑡) =
𝑒𝑎1𝑠𝑡+𝑏1𝑠𝑡𝜃𝑖𝑠𝑡

1 + 𝑒𝑎1𝑠𝑡+𝑏1𝑠𝑡𝜃𝑖𝑠𝑡
 

… 

Pr (𝐷𝑖𝐽𝑠𝑡 = 1|𝜃𝑖𝑠𝑡) =
𝑒𝑎𝐽𝑠𝑡+𝑏𝐽𝑠𝑡𝜃𝑖𝑠𝑡

1 + 𝑒𝑎𝐽𝑠𝑡+𝑏𝐽𝑠𝑡𝜃𝑖𝑠𝑡
 

We start with end of Kindergarten (K) assessments for each subject. We pool all the items (in 

the same subject) in the same measurement system, and we normalize a (=0) and b (=1) for one of the 

items, as usual, before we estimate the remaining parameters of the IRT model. 

Pr (𝐷𝑖1𝑠𝐾 = 1|𝜃𝑖𝑠𝐾) =
𝑒𝑎1𝑠𝐾+𝑏1𝑠𝐾𝜃𝑖𝑠𝐾

1 + 𝑒𝑎1𝑠𝐾+𝑏1𝑠𝐾𝜃𝑖𝑠𝐾
 

… 

Pr (𝐷𝑖𝐽𝑠𝐾 = 1|𝜃𝑖𝑠𝐾) =
𝑒𝑎𝐽𝑠𝐾+𝑏𝐽𝑠𝐾𝜃𝑖𝑠𝐾

1 + 𝑒𝑎𝐽𝑠𝐾+𝑏𝐽𝑠𝐾𝜃𝑖𝑠𝐾
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From this procedure we obtain estimates (𝑎̂1𝑠𝐾, … , 𝑎̂𝐽𝑠𝐾 , 𝑏̂1𝑠𝐾, … , 𝑏̂𝐽𝑠𝐾). Then we can potentially 

construct the best estimate of 𝜃𝑖𝑠𝐾 for each individual in K. 

We then go to end of first grade. The IRT system is:  

Pr (𝐷𝑖1𝑠1 = 1|𝜃𝑖𝑠1) =
𝑒𝑎1𝑠1+𝑏1𝑠1𝜃𝑖𝑠1

1 + 𝑒𝑎1𝑠1+𝑏1𝑠1𝜃𝑖𝑠1
 

… 

Pr (𝐷𝑖𝐽𝑠1 = 1|𝜃𝑖𝑠1) =
𝑒𝑎𝐽𝑠1+𝑏𝐽𝑠1𝜃𝑖𝑠1

1 + 𝑒𝑎𝐽𝑠1+𝑏𝐽𝑠1𝜃𝑖𝑠1
 

J can of course vary by grade. For simplicity we ignore variation in J across grades. We identify 

the items that are common in K and 1, and when estimating the IRT system for grade 1, we restrict the 

𝑎𝑗𝑠1 and 𝑏𝑗𝑠1 parameters to be the same as those estimated for K. Therefore, for a common item 𝑗𝑐, the 

restriction is 𝑎𝑗𝑐𝑠1 = 𝑎̂𝑗𝑐𝑠𝐾  and 𝑏𝑗𝑐𝑠1 = 𝑏̂𝑗𝑐𝑠𝐾. 

With this procedure, we also construct our best prediction of 𝜃𝑖𝑠1 (empirical bayes mean) for 

each student in grade 1. We also end up with (𝑎̂1𝑠1, … , 𝑎̂𝐽𝑠1, 𝑏̂1𝑠1, … , 𝑏̂𝐽𝑠1), although not all of these are 

estimated, since we constrain some of them to the K values. One implicit assumption in our procedure is 

that the performance of an individual on a common item in K and 1 depends only on the value of 𝜃 at 

that age, and not on what other items/assessments are given at the same time. If performance on an item 

depends also on which other items or assessments are given (because, for example, the individual gets 

tired if assessments are very large or very hard, or gets better at answering an item if there are many 

other similar items in the assessment, or for some other reason), then our procedure is not valid. 

Going on to second grade, the IRT system is the same: 

Pr (𝐷𝑖1𝑠2 = 1|𝜃𝑖𝑠2) =
𝑒𝑎1𝑠2+𝑏1𝑠2𝜃𝑖𝑠2

1 + 𝑒𝑎1𝑠2+𝑏1𝑠2𝜃𝑖𝑠2
 

… 

Pr (𝐷𝑖𝐽𝑠2 = 1|𝜃𝑖𝑠2) =
𝑒𝑎𝐽𝑠2+𝑏𝐽𝑠2𝜃𝑖𝑠2

1 + 𝑒𝑎𝐽𝑠2+𝑏𝐽𝑠2𝜃𝑖𝑠2
 

We identify the common items administered in grade 1 and 2 assessments, get the estimates for 

these items from the grade 1 system (some of them may even be common to K), and we constraint the 

corresponding grade 2 parameters to be the same as the estimated grade 1 parameters in this set of items. 

We repeat this procedure until grade 6. We obtain estimates of (𝜃𝑖𝑠𝐾, … , 𝜃𝑖𝑠6) which can be 

arbitrarily correlated (within student, across grades), since they are estimated from completely separate 

systems (if they were estimated jointly, as in Attanasio et al (2020), we would need to worry about having 
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a flexible specification for their joint distribution, as they point out in their paper, since something like a 

normal would restrict substitutability parameters in the production function). 

From the first step we obtain estimates of (𝜃𝑖𝑠𝐾, … , 𝜃𝑖𝑠6) for each individual. These estimates 

have a common location and scale across grades, so they can be used, for example, to look at growth 

curves. The second step of our procedure is to convert (𝜃𝑖𝑠𝐾 , … , 𝜃𝑖𝑠6) into grade equivalent scores, 

which we denote by (𝜑𝑖𝑠𝐾 , … , 𝜑𝑖𝑠6). 

A standard way to estimate grade equivalents is to try to fit median scores in each grade. We can 

do it within our sample. We start by computing 

𝑀𝐾 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝜃𝑖𝑠𝐾) 

… 

𝑀6 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝜃𝑖𝑠6) 

This gives us 7 points in the grade equivalence function. Let median end of K scores correspond 

to 1 grade of learning, median end of grade 1 scores correspond to 2 grades of learning, and so on. Then 

the 7 points in the grade equivalence function we have are: (1, 𝑀𝐾), (2, 𝑀1), (3, 𝑀2), (4, 𝑀3), (5, 𝑀4), 

(6, 𝑀5), (7, 𝑀6). In other words, if individual i in grade t has a score of 𝜃𝑖𝑠𝑡 = 𝑀4, then we say this 

individual has the equivalent of 4 grades of learning. 

However, so far we only have 7 points in the function, while (𝜃𝑖𝑠𝐾, … , 𝜃𝑖𝑠6) are continuous 

variables. We need to fill in the remaining points in the function by fitting a function 𝑔𝑠(. ) to this data: 

𝜑𝑖𝑠𝑡 = 𝑔𝑠(𝜃𝑖𝑠𝑡) 

The function 𝑔𝑠(. ), which needs to be estimated, converts scores 𝜃𝑖𝑠𝑡 into grade equivalents 

𝜑𝑖𝑠𝑡 . It turns out that a an exponential function provides a good fit for 𝑔𝑠(. ) (using the 7 data points for 

the medians).  

Actually, there are 7 points for math, but 8 points for language. The baseline TVIP gives us an 

additional point at baseline for language. However, for simplicity, in the discussion below we keep 

mentioning 7 points throughout.  

We need to address one additional issue. Since are only fitting 7 points, (1, 𝑀𝐾), (2, 𝑀1), 

(3, 𝑀2), (4, 𝑀3), (5, 𝑀4), (6, 𝑀5), (7, 𝑀6), although we can be more or less confident about 

our grade equivalent scores within the support of this data, we are likely to be less confident outside of it. 

In particular, grade equivalent scores for very low end of kindergarten scores, or very high end of 6th 

grade scores, depend on how reliable our estimated function is outside the range of the data. This is a 

problem of finding reasonable extrapolation outside the range of the data. We experiment with a few 

alternatives. 
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One additional practical issue we encountered, is that both the factor model coefficients and the 

predicted factor scores (mean of posterior distribution of factor for each individual, given their response 

patterns), which depend on how many items are there in each test. So, if we have, for example, 90% of 

items coming from one test and 10% of items coming from another test, the second test is not going to 

weigh too much in the determination of the factor and of the coefficients. 

The tests we give have an unbalanced number of items. They do not correspond to the relative 

importance of each test. For example, there are some years where we have 70 items for the TVIP, 7 or 8 

times more than we have for all the other tests. Therefore, we need to rebalance the data, by reweighting 

the items in each test depending on how many items were given overall. 

Table A1 shows percentiles of the distribution of grade equivalents resulting from this 

procedure: 

 

Table A1: Distribution of grade equivalent scores at the end of each grade 

 Grade 

 K 1 2 3 4 5 6 

Percentile        

10 0.74 1.27 2.05 2.71 3.43 4.21 4.82 

25 0.96 1.48 2.59 3.34 4.10 5.06 5.83 

50 1.09 1.84 3.14 4.02 4.90 6.09 7.04 

75 1.22 2.26 3.70 4.74 5.79 7.22 8.42 

90 1.40 2.74 4.24 5.47 6.69 8.33 9.75 
This table shows percentiles 10, 25, 50, 75 and 90 of the distribution of grade equivalent scores at the end of each grade. 
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Appendix B – Test of random assignment 

An important assumption underlying our empirical strategy is that children’s classroom rank at the 

beginning of a given grade is random, due to random assignment of children to classrooms within 

schools in every year.19 Random assignment is closely monitored, and compliance is very high, 98.9 

percent on average. In this appendix, we present tests of random assignment using a methodology 

developed in Jochmans (2020).  

First, we briefly discuss the procedure outlined in Jochmans (2020). Consider our setting, in which 

we observe data on 𝑆 schools, and each school has 𝑛1, … , 𝑛𝑠 students. Within each school, children are 

assigned to a classroom—and therefore their peer group—every year. Let 𝑥𝑠,𝑖 be an observable 

characteristic of child 𝑖 in school 𝑠. If assignment to peer groups is random, 𝑥𝑠,𝑖 will be uncorrelated with 

𝑥𝑠,𝑗, for all  𝑗 belonging to the set of 𝑖′𝑠 classroom peers. Let 𝑥̅𝑠,𝑗 be the average value of characteristic 𝑥 

among student 𝑖′𝑠 peers. The procedure tests whether the correlation in a within-school regression of 𝑥𝑠,𝑖 

on 𝑥̅𝑠,𝑖 is statistically significantly different from zero (a methodology first proposed in Sacerdote (2001)), 

introducing a bias correction for the inclusion of group fixed effects (in our case, schools). It is 

important to control for school fixed effects, as randomization happens within schools, but there may be 

selection into a school based on individual characteristics. Jochmans (2020) shows that a fixed-effects 

regression of 𝑥𝑠,𝑖 on 𝑥̅𝑠,𝑖 will yield biased estimates due to inconsistency of the within-group estimator. 

The proposed corrected estimator is given by 

𝑡𝑠 =
∑ ∑ 𝑥̃𝑠,𝑖 (𝑥̅𝑠,𝑗 +

𝑥𝑠,𝑖

𝑛𝑠 − 1
)

𝑛𝑠
𝑖=1

𝑆
𝑠=1

√∑ (∑ 𝑥̃𝑠,𝑖 (𝑥̅𝑠,𝑗 +
𝑥𝑠,𝑖

𝑛𝑠 − 1)
𝑛𝑠
𝑖=1 )

2
𝑆
𝑠=1

                                                                                            (𝐵. 1) 

 

where  𝑥̃𝑠,𝑖 is the deviation of  𝑥𝑠,𝑖 from its within-school mean. The null hypothesis is thus absence of 

correlation between 𝑖′𝑠 characteristics and those of her peers. To test the random assignment in our 

setting, we implement this procedure by testing for the presence of correlation between child 𝑖′𝑠 scores 

measured at the end of grade 𝑡 − 1 and the average end-of-grade scores in 𝑡 − 1 of the classroom peers 

 
19 We use the word “random” as shorthand but, as discussed at length in Araujo et al. (2016) and Campos et al. (2020), 
strictly speaking random assignment only occurred in 3rd through 6th grade. In the other grades, the assignment rules 
were as-good-as-random. Specifically, the assignment rules we implemented were as follows: In kindergarten, all children 
in each school were ordered by their last name and first name, and were then assigned to teachers in alternating order; in 
1st grade, they were ordered by their date of birth, from oldest to youngest, and were then assigned to teachers in 
alternating order; in 2nd grade, they were divided by gender, ordered by their first name and last name, and then assigned 
in alternating order; in 3rd through 6th grades, they were divided by gender and then randomly assigned to one or another 
classroom.  
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assigned to her in a given grade 𝑡. We do so for each grade. We implement the test for all children in the 

sample, and restricting the sample to those children who have both end of grade 𝑡 − 1 scores as well as 

end of grade 𝑡 scores (as these will be the children that end up being included in the estimation of our 

models). The results are shown in tables B1 and B2, respectively. Our results show that we cannot reject 

the null hypothesis that there is no correlation between child 𝑖′𝑠 achievement and that of her classroom 

peers. This result is true for all grades and both samples. Hence, we conclude that random assignment 

was successful in our setting. 

 

Table B1: Testing for random assignment of children to classrooms, full sample 

 

 Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 

Test statistic 1.359 -0.383 0.905 0.300 -0.445 -0.222 0.980 

P-value 0.174 0.702 0.366 0.764 0.657 0.825 0.327 

Notes: In this table, we report results for tests of random assignment of children to classrooms within schools 
using a methodology proposed by Jochmans (2020). The null hypothesis is absence of correlation between a 
child’s ability measured at  the end of the previous grade and the average ability of classroom peers assigned to 
her at the beginning of a given grade, conditional on school. The sample includes all children. 

 
 

Table B2: Testing for random assignment of children to classrooms, restricted sample 

 
 Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 

Test statistic 1.392 -0.005 1.425 0.413 -0.043 0.001 1.037 

P-value 0.164 0.996 0.154 0.680 0.966 0.999 0.300 

Notes: In this table, we report results for tests of random assignment of children to classrooms within schools 
using a method- ology proposed by Jochmans (2020). The null hypothesis is absence of correlation between a 
child’s ability measured at the end of the previous grade and the average ability of classroom peers assigned to 
her at the beginning of a given grade, conditional on school. The sample is restricted to children who have 
available both beginning- and end-of-grade scores for a given grade. 
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Appendix C – Procedure for estimating the production function 

Basic Model 

 Equation (4) defines a system of equations, one for each grade 𝑡 = 0 … 6. In order to estimate it, 

we start by taking logs:  

𝑙𝑛𝑌𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝜇𝑠𝑡 + 𝑋𝑠𝑐0…𝑐𝑡𝑡𝑗𝛾𝑡 +
𝜃𝑡

𝜌𝑡

𝑙𝑛 (∑ 𝜋𝑐𝑘𝑠𝑡𝛿𝑐𝑠𝑘
𝜌𝑡

𝑡

𝑘=0

) + 𝑣𝑠𝑐0…𝑐𝑡𝑡𝑗    (8) 

We define 𝑣𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝑙𝑛𝑢𝑠𝑐0…𝑐𝑡𝑡𝑗. In addition, we need to initialize the system. Notice that the implied 

equation for grade 0 (kindergarten) only has one classroom input, and therefore it simplifies to: 

𝑙𝑛𝑌𝑠𝑐00𝑗 = 𝜇𝑠0 + 𝑋𝑠𝑐00𝑗𝛾0 + 𝜃0 ln (𝜋𝑐0𝑠0

1
𝜌0) + 𝜃0𝑙𝑛(𝛿𝑐𝑠0) + 𝑣𝑠𝑐00𝑗    (9) 

This is a standard VA equation for kindergarten, where 𝑙𝑛𝑌𝑠𝑐00𝑗 is a linear function of classroom 

assignment indicators, which are estimated to be 𝜃0𝑙𝑛(𝛿𝑐𝑠0). 𝜃0 is normalized to be equal to 1. This 

normalization does not affect our estimates of the elasticity of substitution across inputs in different 

grades since it affects classroom inputs in kindergarten proportionally. The return to scale parameters in 

the remaining grades can then be freely estimated. 

Identification 

 As mentioned in the main text of the paper, the assumption that classroom inputs are common 

to all students in a particular classroom means that the parameters of the system of equations (8) and (9) 

(one equation per grade) and the vector of classroom qualities are identified, and should be estimated 

simultaneously. 

 As an illustrative example, suppose we have data from a single school with three classrooms in 

each grade: A, B and C. Assume also there are no other X controls we need to consider. We already saw 

that for grade 0 (kindergarten) we need one normalization which we will discuss below. For now, assume 

we have an estimate of 𝛿𝑐𝑠0 for each classroom, c=A,B,C. Start from the production function for grade 1 

achievement. 

 Define 𝑌𝑠𝑐0𝑐11 = 𝐸(𝑙𝑛𝑌𝑠𝑐0𝑐11𝑗|𝑐0, 𝑐1) =
𝜃𝑡

𝜌𝑡
𝑙𝑛[𝜋1𝑠1𝛿𝑐0𝑠0

𝜌1 + (1 − 𝜋1𝑠1)𝛿𝑐1𝑠1
𝜌1]. Then: 

𝑌𝑠𝐴𝐴1 = 𝐸(𝑙𝑛𝑌𝑠𝑐0𝑐11𝑗|𝑐0 = 𝐴, 𝑐1 = 𝐴) =
𝜃𝑡

𝜌𝑡

𝑙𝑛[𝜋1𝑠1𝛿𝐴𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1

𝜌1] 

𝑌𝑠𝐴𝐵1 = 𝐸(𝑙𝑛𝑌𝑠𝑐0𝑐11𝑗|𝑐0 = 𝐴, 𝑐1 = 𝐵) =
𝜃𝑡

𝜌𝑡

𝑙𝑛[𝜋1𝑠1𝛿𝐴𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐵𝑠1

𝜌1] 

𝑌𝑠𝐴𝐶1 = 𝐸(𝑙𝑛𝑌𝑠𝑐0𝑐11𝑗|𝑐0 = 𝐴, 𝑐1 = 𝐶) =
𝜃𝑡

𝜌𝑡

𝑙𝑛𝐴[𝜋1𝑠1𝛿𝐴𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐶𝑠1

𝜌1] 
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… 

 

𝑌𝑠𝐵𝐴1 = 𝐸(𝑙𝑛𝑌𝑠𝑐0𝑐11𝑗|𝑐0 = 𝐵, 𝑐1 = 𝐴) =
𝜃𝑡

𝜌𝑡

𝑙𝑛[𝜋1𝑠1𝛿𝐵𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1

𝜌1] 

… 

𝑌𝑠𝐶𝐶1 = 𝐸(𝑙𝑛𝑌𝑠𝑐0𝑐11𝑗|𝑐0 = 𝐶, 𝑐1 = 𝐶) =
𝜃𝑡

𝜌𝑡

𝑙𝑛[𝜋1𝑠1𝛿𝐶𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐶𝑠1

𝜌1] 

 Taking ratios, since there are 9 kindergarten and first grade combinations, there are 8 unique 

ratios that are not linearly dependent: 

𝑌𝑠𝐴𝐴1

𝑌𝑠𝐴𝐵1

=
𝑙𝑛[𝜋1𝑠1𝛿𝐴𝑠0

𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1
𝜌1]

𝑙𝑛[𝜋1𝑠1𝛿𝐵𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1

𝜌1]
 

𝑌𝑠𝐴𝐴1

𝑌𝑠𝐴𝐶1

=
𝑙𝑛[𝜋1𝑠1𝛿𝐴𝑠0

𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1
𝜌1]

𝑙𝑛[𝜋1𝑠1𝛿𝐵𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐶𝑠1

𝜌1]
 

𝑌𝑠𝐴𝐴1

𝑌𝑠𝐵𝐴1

=
𝑙𝑛[𝜋1𝑠1𝛿𝐴𝑠0

𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1
𝜌1]

𝑙𝑛[𝜋1𝑠1𝛿𝐵𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1

𝜌1]
 

𝑌𝑠𝐴𝐴1

𝑌𝑠𝐵𝐵1

=
𝑙𝑛[𝜋1𝑠1𝛿𝐴𝑠0

𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1
𝜌1]

𝑙𝑛[𝜋1𝑠1𝛿𝐵𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐵𝑠1

𝜌1]
 

𝑌𝑠𝐴𝐴1

𝑌𝑠𝐵𝐶1

=
𝑙𝑛[𝜋1𝑠1𝛿𝐴𝑠0

𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1
𝜌1]

𝑙𝑛[𝜋1𝑠1𝛿𝐵𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐶𝑠1

𝜌1]
 

𝑌𝑠𝐴𝐴1

𝑌𝑠𝐶𝐴1

=
𝑙𝑛[𝜋1𝑠1𝛿𝐴𝑠0

𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1
𝜌1]

𝑙𝑛[𝜋1𝑠1𝛿𝐶𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1

𝜌1]
 

𝑌𝑠𝐴𝐴1

𝑌𝑠𝐶𝐵1

=
𝑙𝑛[𝜋1𝑠1𝛿𝐴𝑠0

𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1
𝜌1]

𝑙𝑛[𝜋1𝑠1𝛿𝐶𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐵𝑠1

𝜌1]
 

𝑌𝑠𝐴𝐴1

𝑌𝑠𝐶𝐶1

=
𝑙𝑛[𝜋1𝑠1𝛿𝐴𝑠0

𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐴𝑠1
𝜌1]

𝑙𝑛[𝜋1𝑠1𝛿𝐶𝑠0
𝜌1 + (1 − 𝜋1𝑠1)𝛿𝐶𝑠1

𝜌1]
 

From here we have enough moments to recover 𝜋1𝑠1, 𝜌1, 𝛿𝐴𝑠1, 𝛿𝐵𝑠1, 𝛿𝐶𝑠1. Even though 𝛿𝐴𝑠1, 𝛿𝐵𝑠1, 𝛿𝐶𝑠1 

are classroom fixed effects, embedded in a nonlinear model, they can be estimated from a large number 

of students per classroom. Finally, the levels’ equations allow us to recover 𝜃1. 

In the case of schools with only two classrooms per grade (which is true of most but not all 

schools in our sample), we only have 3 linearly independent ratios per school. Therefore we cannot 

identify the model from a single school, but we have enough moments to recover all the parameters if 

we use at least two different schools (since we need to estimate 𝜋1𝑠1, 𝜌1 plus two classroom effects per 

school, a total of six parameters which can be recovered from six independent ratios across two schools; 



 

40 
 

in addition to 𝜃1, which can then be recovered from the level equations). Since we have many more than 

two schools, we can estimate all the parameters of the model, even if all schools only had two classrooms 

per grade. 

 To estimate the model at the end of grade 2 we have one more parameter to recover (𝜋1𝑠1). This 

means that, if we have a single school with three classrooms, we need at least 6 linearly independent 

ratios like the ones above to recover all the parameters. If schools only have two classrooms, we need to 

have data from three schools. Each additional grade adds only one more parameter to the model. 

Regardless, we have enough schools and classrooms to identify the entire model, even at the end of sixth 

grade. 

 Notice that we need a normalization to recover the kindergarten classroom input: 𝜃0 is 

normalized to be equal to 1. This is a fairly innocuous normalization. Nevertheless, our main results are 

presented in the form of counterfactual simulations of different sequences of classroom inputs, which 

are not influenced by this normalization.   

Estimation 

 In practice, instead of estimating the entire model for all grades simultaneously, it is 

computationally easier to proceed iteratively, one grade at a time, starting with the lower grades. We start 

from equation (9), 𝑡 = 0, from which we recover estimates of 𝛿𝑐𝑠0 for each classroom (and we estimate 

the remaining parameters of the model, which are not of substantial interest). From the equation for first 

grade (equation (8) for 𝑡 = 1), we use 𝛿𝑐𝑠0 from the 𝑡 = 0 equation, and we estimate all the parameters 

of the production function (𝜃1, 𝜌1, 𝜋𝑐0𝑠1) together with 𝛿𝑐𝑠1 (as well as the parameters on the controls). 

In grade t, we use {𝛿𝑐𝑠0 … 𝛿𝑐𝑠𝑡−1} obtained from the previous grades’ equations, and we estimate (𝜃𝑡, 𝜌𝑡, 

𝜋𝑐0𝑠𝑡 , … , 𝜋𝑐𝑡−1𝑠𝑡) together with 𝛿𝑐𝑠𝑡. 

Within each grade t, the procedure has four steps. Again, this greatly facilitates the computation 

of the estimates given the large number of classroom indicators included in the nonlinear CES 

specification of the production function. The steps are as follows: 

1. In the first step we estimate γt from grade specific regressions of log test scores on classroom 

fixed effects and baseline controls: 𝑙𝑛𝑌𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝜇𝑠𝑐𝑡 + 𝑋𝑠𝑐0…𝑐𝑡𝑡𝑗𝛾𝑡 + 𝑣𝑠𝑐0…𝑐𝑡𝑡𝑗. In principle, 

instead of 𝜇𝑠𝑐𝑡 one could use indicators for the whole sequence of classroom assignments. We 

show below that this increases substantially the number of parameters to be estimated without 

any substantial change in our results. From this equation we recover 𝛾𝑡 for each grade, and we 

can then also estimate 𝑙𝑛𝑌̃𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝑙𝑛𝑌𝑠𝑐0…𝑐𝑡𝑡𝑗 − 𝑋𝑠𝑐0…𝑐𝑡𝑡𝑗𝛾𝑡. We then use this quantity to 

estimate the production function: 
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𝑙𝑛𝑌̃𝑠𝑐0…𝑐𝑡𝑡𝑗 = 𝜇𝑠𝑡 +
𝜃𝑡

𝜌𝑡

𝑙𝑛 (∑ 𝜋𝑐𝑘𝑠𝑡𝛿𝑐𝑠𝑘
𝜌𝑡

𝑡

𝑘=0

) + 𝑣𝑠𝑐0…𝑐𝑡𝑡𝑗     (10) 

2. It is easier to describe the second step of the procedure by imagining that we start by guessing 

initial values for 𝛿𝑐𝑠𝑡 ({𝛿𝑐𝑠0 … 𝛿𝑐𝑠𝑡−1} having already been estimated and therefore used as data 

in this step). One possible initial guess comes from estimates of classroom effects for grade t 

from linear VA models. Given initial guesses for 𝛿𝑐𝑠𝑡, we use nonlinear least squares to estimate 

the remaining parameters. 

3. For the third step we take expectations on both sides of equation (7) and solve for 𝛿𝑐𝑠𝑡: 

𝛿𝑐𝑠𝑡 =
𝑒

{[𝐸(𝑙𝑛𝑌̃𝑠𝑐0…𝑐𝑡𝑡𝑗|𝑐0…𝑐𝑡)−(𝜇𝑠𝑡+𝑋𝑠𝑐0…𝑐𝑡𝑡𝑗𝛾𝑡)]
𝜌𝑡
𝜃𝑡

}
− ∑ 𝜋𝑐𝑘𝑠𝑡𝛿𝑐𝑠𝑘

𝜌𝑡𝑡−1
𝑘=0

1 − ∑ 𝜋𝑐𝑘𝑠𝑡
𝑡−1
𝑘=0

     (11) 

We then use the estimates in step 3 as initial values in step 2 and loop between these two steps 

until the procedure converges. 

4. Finally, we restart the algorithm from step 2 using completely new initial values for 𝛿𝑐𝑠𝑡. To 

generate these new initial values, we first take random draws for (𝜃𝑡, 𝜌𝑡, 𝜋𝑐0𝑠𝑡 , … , 𝜋𝑐𝑡−1𝑠𝑡), and 

we use them to generate values of 𝛿𝑐𝑠𝑡 consistent with these random draws, using equation (10). 

After looping over 500 different starting values for 𝛿𝑐𝑠𝑡, we pick the set of estimates that 

minimizes the sum of squared residuals (SSR): 

𝑆𝑆𝑅 = ∑
1

𝑁𝑡

𝑁𝑡

𝑗=1

{𝑙𝑛𝑌̃𝑠𝑐0…𝑐𝑡𝑡𝑗 − [𝜇𝑠𝑡 +
𝜃𝑡

𝜌𝑡

𝑙𝑛 (∑ 𝜋𝑐𝑘𝑠𝑡𝛿𝑐𝑠𝑘
𝜌𝑡

𝑡

𝑘=0

)]}

2

 

 The estimated parameters of the production function are reported in table C1 and the percentiles 

of the estimated distribution of classroom inputs in each grade are in table C2. 
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Table C1: Estimates of the parameters of the production function for each grade 

 Grade 

 1 2 3 4 5 6 

𝜌 -4.11 0.48 0.58 0.46 0.70 0.73 

 (1.13) (0.04) (0.02) (0.003) (0.003) (0.003) 

𝜃 0.37 0.26 1 1.29 1.78 2 

 (0.02) (0.02) (0.02) (0.01) (0.01) . 

𝜋0 0.05 0.08 0.69 0.01 0.04 0.01 

 (0.04) (0.05) (0.01) . (0.01) . 

𝜋1 0.95 0.45 0.08 0.11 0.11 0.09 

 (0.04) (0.03) (0.01) (0.004) (0.002) (0.002) 

𝜋2  0.47 0.01 0.26 0.18 0.16 

  (0.03) (0.002) (0.002) (0.002) (0.001) 

𝜋3   0.22 0.06 0.22 0.25 

   (0.004) (0.002) (0.002) (0.001) 

𝜋4    0.56 0.16 0.04 

    (0.003) (0.003) (0.003) 

𝜋5     0.29 0.40 

     (0.003) (0.003) 

𝜋6      0.06 

      (0.001) 

Elasticity of 0.2 1.93 2.4 1.85 3.28 3.72 

substitution (0.04) (0.13) (0.09) (0.01) (0.04) (0.04) 
This table shows estimates of the parameters of the production function (and the implied elasticity of substitution 

between inputs in different grades) for each grade. The production function is specified in equation (8). Standard errors 

are reported in parenthesis. There are three instances where standard errors are not reported. This happened because 

these are close to the boundary points in the search grid (although the algorithm never stops at a corner). 

 
Table C2: Distribution of classroom inputs in each grade 

 Grade 

 K 1 2 3 4 5 6 

Percentile        

10 0.76 0.59 0.11 0.28 0.27 0.30 0.31 

25 0.94 0.76 0.41 0.77 0.65 0.69 0.78 

50 1.06 0.97 1.06 1.47 1.03 1.22 1.55 

75 1.15 1.24 2.39 2.42 1.42 1.79 2.53 

90 1.23 1.79 6.00 3.68 1.83 2.33 3.65 
This table shows estimates of the distribution of classroom inputs in each grade estimated from the production function 

(and the implied elasticity of substitution between inputs in different grades). The production function is specified in 

equation (8). 
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Appendix D – Coefficients from the regressions of baseline TVIP on Good-Bad sequences 

Figure D1: Impact (placebo) of sequences of classroom quality on baseline TVIP 

   

  

 

 
Note: Each panel in this figure (A, B, C, D, E and F) shows average TVIP for students in different sequences of classroom 
quality. The difference between each panel is the sample of students, corresponding to those in the balanced panel at the 
end of each grade. B denotes a bad classroom in the sequence and G denotes a good classroom in the sequences (so, for 
example, GBBGG in panel D means that, by the end of 4th grade, students in this sequence experienced an above school 
average classroom in kindergarten, 3rd and 4th grade, and a below school average classroom in the remaining grades). The 
regressions also control for age, gender, maternal education and wealth (as well as school fixed effects). 
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Figure D2: Impact (placebo) of the number of good classrooms across grades baseline TVIP 

  

  

  

Note: Each panel in this figure shows average residual learning at the end of each grade (1st, 2nd, 3rd, 4th, 5th, 6th) for students 
in sequences with different numbers of good classrooms, relatively to students with zero good classrooms up to the grade 
achievemnt is measured. Residual learning is achievement in math and language at the end of a grade after controlling for 
age, gender, baseline TVIP, maternal education and wealth (as well as school fixed effects). 
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Appendix E – Sequences of classroom quality, leave-one-out (from classroom and school) 

estimates 

Figure E1: Impact of sequences of classroom quality on achievement 

  

  

 

 

Note: Each panel in this figure (A, B, C, D, E and F) shows average residual learning at the end of each grade (1st, 2nd, 3rd, 
4th, 5th, and 6th) for students in different sequences of classroom quality. B denotes a bad classroom in the sequence and 
G denotes a good classroom in the sequences (so, for example, GBBGG in panel D means that, by the end of 4th grade, 
students in this sequence experienced an above school average classroom in kindergarten, 3rd and 4th grade, and a below 
school average classroom in the remaining grades). Residual learning is achievement in math and language at the end of a 
grade after controlling for age, gender, baseline TVIP, maternal education and wealth (as well as school fixed effects). 
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Figure E2: Impact of the number of good classrooms across grades on achievement 

 

Note: Each panel in this figure shows average residual learning at the end of each grade (1st, 2nd, 3rd, 4th, 5th, 6th) for students 
in sequences with different numbers of good classrooms, relatively to students with zero good classrooms up to the grade 
achievemnt is measured. Residual learning is achievement in math and language at the end of a grade after controlling for 
age, gender, baseline TVIP, maternal education and wealth (as well as school fixed effects). 
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Figure E3: Impact (placebo) of sequences of classroom quality on baseline TVIP 

 

 

 

 
Note: Each panel in this figure (A, B, C, D, E and F) shows average TVIP for students in different sequences of classroom 
quality. The difference between each panel is the sample of students, corresponding to those in the balanced panel at the 
end of each grade. B denotes a bad classroom in the sequence and G denotes a good classroom in the sequences (so, for 
example, GBBGG in panel D means that, by the end of 4th grade, students in this sequence experienced an above school 
average classroom in kindergarten, 3rd and 4th grade, and a below school average classroom in the remaining grades). The 
regressions also control for age, gender, maternal education and wealth (as well as school fixed effects). 
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Figure E4: Impact (placebo) of the number of good classrooms across grades baseline TVIP 

 

  

 

  

Note: Each panel in this figure shows average residual learning at the end of each grade (1st, 2nd, 3rd, 4th, 5th, 6th) for students 
in sequences with different numbers of good classrooms, relatively to students with zero good classrooms up to the grade 
achievemnt is measured. Residual learning is achievement in math and language at the end of a grade after controlling for 
age, gender, baseline TVIP, maternal education and wealth (as well as school fixed effects). 
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